viernes, 18 de julio de 2014

BOMBA DE INYECCION LINEAL DIESEL
Introducción 
El motor Diesel tiene una vastísima aplicación, tanto en el transporte terrestre como marítimo.
No solo como medio de propulsión en transporte, puesto que para el accionamiento de generadores de corriente, compresores e instalaciones industriales, es el motor de combustión preferido por sus características de gran potencia, elevado rendimiento y bajo consumo de combustible.
Es un componente de vital importancia en este motor, el sistema de inyección. La precisión de montaje de sus componentes, hace que el mantenimiento y reparación del mismo, requiera de personal calificado.
Este curso apunta a lograr ese perfil requerido, sumando a la formación de base ya adquirida, la especialización teórico-práctica en el sistema de inyección.
BOMBA DE INYECCIÓN LINEAL:
Esta bomba está formada por tantos elementos de bombas como cilindros tiene el motor. El combustible pasa aun colector al que asoman las lumbreras de cada uno de los elementos de la bomba. Cada elemento está constituido por un cuerpo de bomba y su correspondiente émbolo, movido por una leva (tantas como cilindros), montada sobre un árbol de levas que recibe el movimiento del cigüeñal mediante engranajes de la distribución o correas dentadas.

DESCRIPCION PARTES PRINCIPALES DE LA BOMBA DE INYECCIÓN LINEAL

VÁLVULA DE ASPIRACIÓN
La válvula de aspiración o de descarga permite la entrada del combustible hacia los inyectores.

CUERPO DE LA BOMBA
El cuerpo de la bomba es donde se acoplan todos los elementos y se integran al funcionamiento de la misma, en algunas ocasiones también acopla la bomba elevadora.

ÁRBOL DE LEVAS
El árbol de levas va soportado sobre rodamientos, es de acero forjado, templado y posee alta resistencia al desgaste, debe ir fijo con un pasador a un engrane a su vez conectado con el cigüeñal.

ENTRADA DEL COMBUSTIBLE
La entrada del combustible se da por un componente llamado el émbolo de la bomba el cual introduce la cantidad suficiente de combustible al inyector.

EL ÉMBOLO

TABLA - EL ÉMBOLO Y SUS PARTES


EL ÉMBOLO Y SUS PARTES 


Varilla de control
La varilla de control hace girar todos los émbolos para variar la cantidad de combustible inyectado. Las horquillas de control son montadas en la varilla y se acoplan con las palancas en el extremo inferior de los émbolos.

VÁLVULA DE ENTREGA
Se encuentra en la parte superior de la bomba, arriba del elemento de bombeo, posee una sección paralela que actúa como un pistón pequeño. Actúa como válvula de retención. Retiene el combustible en el tubo y en el inyector a baja presión. Pero produce una caída brusca de presión en el inyector al final del periodo de inyección (al final de la carrera efectiva del émbolo). Se cierra con rapidez por acción de su resorte y por la alta presión.

VÁLVULA DE ENTREGA

En la figura siguiente se ve la sección de una bomba de inyección, mostrando la forma en que se accionan la horquilla y palanca de control para girar los émbolos de bombeo y controlar la entrega del combustible a los

INYECTORES

ACOPLAMIENTO PARA AVANCE AUTOMÁTICO
En las bombas de inyección en línea es posible instalar un acoplamiento para avance automático en el extremo delantero del árbol de levas de la misma, en lugar del acoplamiento normal para impulsión. Este sirve además para avanzar la inyección cuando aumenta la velocidad de rotación del árbol de levas.
Se trata de un acople dividido con sus partes delantera y trasera conectadas por un mecanismo de avance centrífugo.

MECANISMO DE AVANCE 
En éste mecanismo hay contrapesos que se mueven hacia afuera o hacia adentro por la fuerza centrífuga cuando se hace el eje y con ello se gira la parte trasera del acople en relación con la parte delantera del mismo avanzando así la sincronización de la bomba de inyección.

INYECTORES:
Su misión es la de introducir el carburante a gran presión en el interior de las cámaras de combustión del motor. Están unidos a través de un tubo metálico a los porta-inyectores, que mediante unas bridas van unidos a la culata. Hay tantos inyectores como número de cilindros tiene el motor.
La parte que asoma al cilindro termina en uno o varios orificios calibrados, que son cerrados por una válvula cónica por la acción de un resorte.
El gasoil que entra en el inyector enviado a presión por la bomba, llega a la punta del inyector venciendo la resistencia de la válvula, a la que abre, y penetra en el cilindro. Cuando cesa la presión el la tubería de llegada la válvula cónica cierra la comunicación al cilindro.

EXISTEN DOS TIPOS PRINCIPALES DE INYECTORES:
• de espiga o tetón
• de orificio
El inyector de espiga, tiene la válvula terminando en forma de espiga que sale y entra en el orificio de paso del gasoil al cilindro, siendo difícil que se tapone. El cierre se efectúa por la parte cónica que lleva por encima de la espiga o tetón.
Es empleado particularmente en motores de combustión separada o cámara auxiliar y en general en todos los que el aire comprimido tiene una gran turbulencia.
La presión de inyección oscila entre 60 y 150 atmósfera.

• Tetón cilíndrico
• Tetón cónico
El inyector de orificio, tiene varios orificios de salida. Las válvulas cierran las salidas sin introducirse en dichos orificios estando más expuestos a taponarse por la carbonilla. Sin embargo tienen la ventaja de que permiten la orientación y reparto del gasoil, asegurando una completa combustión aunque no haya gran turbulencia de aire, de ahí que sean muy utilizados en la inyección directa.
La presión de inyección es superior a los de espiga, alcanzando valores entre 150 y 300 kg/cm2.
a) con orificio central
b) con orificio capilar Cualquiera de los inyectores consta de dos partes: el porta-inyector y el inyector propiamente dicho.
El porta-inyector sirve de soporte al inyector, el cual va roscado en su interior. El gasoil penetra en un tubo por el que desciende hasta la cámara que hay alrededor de la válvula del inyector.
El inyector el la pieza principal y más delicada, debiendo vigilarse con frecuencia manteniéndola limpia y debidamente calibrado.
Para finalizar comentaré como dije en la introducción de este tema que la alimentación de los motores diesel se realiza introduciendo aire y combustible.
El aire que entra en los cilindros deben estar perfectamente filtrado para no dañar a las camisas ni obstruir a los inyectores. Para el filtrado del aire se coloca a la entrada de la tubería de admisión un filtro. Su mantenimiento es más frecuente que los empleados en los motores de gasolina, debido a que el motor de gasoil consume mayor cantidad de aire (alrededor de 1 litro de combustible por 13.000 litros de aire); al tener que filtrar mayor cantidad de aire sus dimensiones también son mayores. Los tipos de filtros más utilizados son: filtros secos, de maya metálica y de baño en aceite.

Procesos

BOMBIN CEBADOR 2

TOBERAS BOSCH

BOMBA DE TRANSFERENCIA 1

TURBOS

INYECTOR ELECTRONICO

CABEZAL DE BOMBA 2

INYECTOR ELECTRONICO 3

BOMBA DE INYECCION ZEXEL 2

BOMBA DE INYECCION ZEXEL 1

INYECTORES Y BOMBAS


BOMBAS E INYECTORES DIESEL

BOMBA DE INYECCION LINEAL BOSCH

JUEGO DE ELEMENTOS Y TOBERAS 2


JUEGO DE ELEMENTOS Y TOBERAS 1



BOMBA INYECCION LINEAL ZEXEL

BOMBA DE INYECCION BOSCH

BOMBA DE INYECTOR BOSCH 2

DISCO DE LEVAS
REPUESTOS DE LA BOMBA DE INYECCION 2


VÁLVULAS

INYECTORES ELECTRONICOS 2

Recursos
RECURSOS DIDÁCTICOS
PROYECTOR DE ACETATOS.
CAÑÓN Y LAPTOP
LIBROS Y MANUALES TÉCNICOS.



CONCLUSIONES
Manríquez Domínguez Luis Manuel

La bomba de inyección Bosch o en línea como se conoce también, es un aparato mecánico de elevada precisión que tiene la función principal en el sistema de inyección Diesel, esto es: Elevar la presión del combustible a los valores de trabajo del inyector en el momento y con el ritmo y tiempo de duración adecuados. Dosificar con exactitud la cantidad de combustible que será inyectado al cilindro de acuerdo a la voluntad del conductor. Regular las velocidades máximas y mínimas del motor.

Martínez mata José Antonio
Yo opino que la bomba de inyección lineal en si. es mejor en muchos aspectos a diferencia de la bomba rotativa ya que genera más precio.

Santiago jarcia Juan Carlos
Un inyector es un componente del sistema de inyección encargado de la inyección del combustible, que se encarga de pulverizar en forma de aerosol el combustible, para que pueda ponerse en marcha el motor. Los inyectores pueden ser mecánicos o electrónicos. La Bomba de Inyección es la encargada de la aspiración del combustible. El ciclo térmico se utiliza en los motores térmicos. Un motor térmico convierte la energía térmica de un fluido, obtenido mediante un proceso de combustión en energía mecánica.

Conclusión
La importancia de la bomba de inyección en los motores diesel se debe a la fuerte presión con que debe inyectarse el gasoil. En cada cilindro, la bomba ha de inyectar más de mil veces por minuto y en el instante preciso un pequeñísimo volumen de gasoil, pero muy bien dosificado, con una presión de hasta 300 kilos por centímetro cúbico. Al ralentí, el volumen a inyectar es mucho menor y las inyecciones han de poder variar de uno a otro tamaño según la carga del motor. Además han de ser exactas las que van a cada cilindro y cada inyección debe durar unas dos milésimas de segundo.
La aparición de la bomba alemana Bosch, y el desarrollo de otras como la inglesa C.A.V. , la francesa Lavalette, o la italiana Marelli, todas ellas parecidas y de fundamento análogo, han permitido el rápido desarrollo del motor Diesel.



DESCRIPCION PARTES PRINCIPALES DE LA BOMBA DE INYECCIÓN LINEAL
Válvula de aspiración
La válvula de aspiración o de descarga permite la entrada del combustible hacia los inyectores.
Cuerpo de la bomba
El cuerpo de la bomba es donde se acoplan todos los elementos y se integran al funcionamiento de la misma, en algunas ocasiones también acopla la bomba elevadora. 
Árbol de levas 
El árbol de levas va soportado sobre rodamientos, es de acero forjado, templado y posee alta resistencia al desgaste, debe ir fijo con un pasador a un engrane a su vez conectado con el cigüeñal.
Entrada del combustible
La entrada del combustible se da por un componente llamado el émbolo de la bomba el cual introduce la cantidad suficiente de combustible al inyector.

El émbolo
Este movimiento de giro en el émbolo se realiza por medio de la cremallera que engrana con los sectores dentados de cada uno de los elementos de bomba, de forma que cualquier desplazamiento en la misma hace que todos los émbolos giren simultáneamente para que la entrega y el caudal de combustible sean idénticos en cada uno de los cilindros del motor. El control de la varilla de regulación se efectúa a través del pedal acelerador, el cual, con su desplazamiento, determina la mayor o menor cantidad de combustible a inyectar para obtener la potencia deseada.
Antiguamente para parar el motor se empleaba un tirador que actuaba sobre la cremallera. Actualmente, se consigue automáticamente mediante una válvula cónica accionada por un relé que lleva la bomba conectado a la llave de contacto, cortando el paso del gasoil a los inyectores.





Varilla de control
La varilla de control hace girar todos los émbolos para variar la cantidad de combustible inyectado. Las horquillas de control son montadas en la varilla y se acoplan con las palancas en el extremo inferior de los émbolos.

Válvula de entrega
Se encuentra en la parte superior de la bomba, arriba del elemento de bombeo, posee una sección paralela que actúa como un pistón pequeño. Actúa como válvula de retención. Retiene el combustible en el tubo y en el inyector a baja presión. Pero produce una caída brusca de presión en el inyector al final del periodo de inyección (al final de la carrera efectiva del émbolo). Se cierra con rapidez por acción de su resorte y por la alta presión. 

A qui se ve la sección de una bomba de inyección, mostrando la forma en que se accionan la horquilla y palanca de control para girar los émbolos de bombeo y controlar la entrega del combustible a los inyectores.

Acoplamiento para avance automático 
En las bombas de inyección en línea es posible instalar un acoplamiento para avance automático en el extremo delantero del árbol de levas de la misma, en lugar del acoplamiento normal para impulsión. Este sirve además para avanzar la inyección cuando aumenta la velocidad de rotación del árbol de levas.
Se trata de un acople dividido con sus partes delantera y trasera conectadas por un mecanismo de avance centrífugo.
En éste mecanismo hay contrapesos que se mueven hacia afuera o hacia adentro por la fuerza centrífuga cuando se hace el eje y con ello se gira la parte trasera del acople en relación con la parte delantera del mismo avanzando así la sincronización de la bomba de inyección.


Herramienta que se utiliza para la sincronización de inyección 


 Micrómetro


Bombas de inyección e inyectores








lunes, 30 de junio de 2014

tipos de sincronizacion

TIPOS DE SINCRONIZACIÓN 
BOMBAS DE INYECCIÓN DIÉSEL

En los motores Diésel existen dos tipos de bombas de inyección de combustible, éstas son las lineales y las rotativas; las lineales se utilizan frecuentemente en motores de alta relación de compresión y las rotativas en motores con relaciones medianas de compresión. Ambas bombas ofrecen caudal pero deben ser robustas para soportar la presión del sistema de inyección.


BOMBAS DE INYECCIÓN LINEAL

Se denomina principalmente bomba de inyección lineal debido a que los impulsadores se encuentran en línea y se caracteriza porque el número de impulsores debe ser igual al número de cilindros, las levas están desfasadas según la distribución de la inyección de combustible para cada cilindro.La presión en este tipo de bomba está dada por la válvula anti-retorno y por la fuerza del muelle ubicado en el inyector. La inyección se debe dar a cabo al superar la presión ya mencionada y pulverizar el combustible mezclándolo correctamente con el aire y así obtener una mejor combustión.Las partes principales de la bomba de inyección lineal son:Válvula de aspiración, cuerpo de la bomba, árbol de levas, entrada de combustible, bomba de alimentación (opcional), regulador o gobernador, salida de combustible, varilla de control.Funcionamiento de la bomba linealAl girar el árbol de levas mueve los impulsadores y los émbolos ubicados en los cilindros de la bomba; mientras se oprime el acelerador se mueve la cremallera y esta a su vez hace girar el helicoidal (ver más adelante) el cual suministra más cantidad de combustible a los cilindros de la bomba y por medio de los émbolos el combustible es enviado hacia cada inyector en la cámara de combustión del motor. Cada elemento (impulsador y émbolo) es accionado por el eje de levas de la bomba con su correspondiente leva; en algunas ocasiones cuando la bomba de suministro o elevadora va acoplada a la carcaza de la bomba de inyección se utiliza una leva extra acoplada directamente en el eje de levas. El funcionamiento es similar al conjunto de camisa, pistón de un motor corriente. El árbol de levas va conectado a un acople que permite sincronizar la bomba con respecto al funcionamiento del motor.



DESCRIPCION PARTES PRINCIPALES DE LA BOMBA DE INYECCIÓN LINEAL

Válvula de aspiraciónLa válvula de aspiración o de descarga permite la entrada del combustible hacia los inyectores.Cuerpo de la bombaEl cuerpo de la bomba es donde se acoplan todos los elementos y se integran al funcionamiento de la misma, en algunas ocasiones también acopla la bomba elevadora.Árbol de levas El árbol de levas va soportado sobre rodamientos, es de acero forjado, templado y posee alta resistencia al desgaste, debe ir fijo con un pasador a un engrane a su vez conectado con el cigüeñal.Entrada del combustibleLa entrada del combustible se da por un componente llamado el émbolo de la bomba el cual introduce la cantidad suficiente de combustible al inyector.Varilla de controlLa varilla de control hace girar todos los émbolos para variar la cantidad de combustible inyectado. Las horquillas de control son montadas en la varilla y se acoplan con las palancas en el extremo inferior de los émbolos.Válvula de entregaSe encuentra en la parte superior de la bomba, arriba del elemento de bombeo, posee una sección paralela que actúa como un pistón pequeño. Actúa como válvula de retención. Retiene el combustible en el tubo y en el inyector a baja presión. Pero produce una caída brusca de presión en el inyector al final del periodo de inyección (al final de la carrera efectiva del émbolo). Se cierra con rapidez por acción de su resorte y por la alta presión.En la figura siguiente se ve la sección de una bomba de inyección, mostrando la forma en que se accionan la horquilla y palanca de control para girar los émbolos de bombeo y controlar la entrega del combustible a los inyectores.Acoplamiento para avance automático En las bombas de inyección en línea es posible instalar un acoplamiento para avance automático en el extremo delantero del árbol de levas de la misma, en lugar del acoplamiento normal para impulsión. Este sirve además para avanzar la inyección cuando aumenta la velocidad de rotación del árbol de levas.Se trata de un acople dividido con sus partes delantera y trasera conectadas por un mecanismo de avance centrífugo.En éste mecanismo hay contrapesos que se mueven hacia afuera o hacia adentro por la fuerza centrífuga cuando se hace el eje y con ello se gira la parte trasera del acople en relación con la parte delantera del mismo avanzando así la sincronización de la bomba de inyección.



BOMBAS ROTATIVAS O DE DISTRIBUIDOR
Las bombas rotativas o del tipo distrbuidor tienen un solo elemento para impulsar el combustible hacia el inyector de cada cilindro del motor; este se llama cabezal hidráulico y gira arrastrado por el cigüeñal mediante engranajes, piñón y cadena o correa dentada de forma igual como ocurre en las bombas en línea para girar el eje de levas. Este cabezal hidráulico impulsa el combustible y lo distribuye en cada circuito de presión a cada cilindro del motor que se halla en fase de compresión de acuerdo con el orden de inyección que tiene el motor.La bomba elevadora succiona combustible del tanque y lo envía a través del sedimentador, pasa a la bomba elevadora y luego a la de inyección a través del filtro. La bomba de inyección realiza la función de entregar combustible a alta presión a los inyectores en el orden de encendido del motor. El sobrante de la bomba de combustible se recibe desde una válvula de retorno y pasa por el tubo de retorno hasta el tanque

LOS INYECTORES
El inyector es la parte terminal del sistema de inyección de un motor Diesel, son denominados también toberas y están constituidos por un racor dotado de un conducto muy delgado en el centro el cual recibe el combustible a presión a través de un tubo proveniente de la bomba de inyección, lo pulveriza y homogeniza en el conducto de aspiración y lo envía a la cámara de combustión o en algunos motores Diesel a una antecámara para producir la combustión.Un inyector funciona con el combustible a presión dentro de ellos o por impulsión del combustible mecánica desde el árbol de levas del motor.Los inyectores CAV y Bosch funcionan mediante presión mientras que los inyectores unitarios y PT son de accionamiento mecánico.El inyector es montado en la culata de cilindros por medio de una brida la cual es fijada con dos tornillos en sus agujeros; otros inyectores se instalan roscados en la culata. El extremo inferior o tobera del inyector sobresale en la cámara de combustión y en el momento preciso inyecta combustible atomizado en ella. El inyector funciona 150 veces por minuto aproximadamente en marcha mínima (ralentí) y puede trbajar hasta 1500 veces por minuto a velocidad máxima.Las partesfundamentales que componen el inyector son:Portatobera.Tobera.Tuerca de tobera.Tuerca de tapa.Vástago.conexión para retorno.Resorte.Tuerca de ajuste del resorte.Entrada de combustible.Funcionamiento del inyectorPor medio del vástago se transfiere la fuerza del resorte. La presión de atomización se ajusta mediante la tuerca de ajuste del resorte que actúa también como asiento para el mismo. El combustible circula desde la entrada de combustible hasta el conducto perforado ubicado en la portatobera.La punta de la válvula de aguja que asienta contra la parte inferior de la tobera, impide el paso por los orificios de la tobera cuando hay combustible a presión los conductos y galería del inyector, se levanta la aguja de su asiento y se atomiza el combustible en las cámaras de combustión. Una pequeña cantidad de combustible escapa hacia arriba el cual sirve de lubricante entre la aguja y la tobera y también lubrica las otras piezas del inyector antes de salir por la conexión para el tubo de retorno en la parte superior y retorno al tanque.Patrón de atomizaciónLa forma de descarga en los orificios de la tobera del inyector se llama patrón de atomización. Este patrón se determina por características como el número, tamaño, longitud y ángulo de los orificios y también por la presión del combustible dentro del inyector. Todos estos factores influyen en la forma y longitud de la atomización.La toberaLa función de la tobera es inyectar una carga de combustible en la cámara de combustión de forma que pueda arder por completo. Para ello existen diversos tipos de toberas, todas con variaciones de la longitud, número de orificios y ángulo de atomización. El tipo de tobera que se emplee en el motor depende de los requisitos particulares de sus cámaras de combustión.Tobera de un solo orificioTienen un solo orifico taladrado en su extremo, cuyo diámetro puede ser de 0.2 mm o mayor. La tobera con punta cónica y un solo orificio tiene este taladrado en ángulo de acuerdo con el motor en que se instalará.Tobera de orificios múltiplesEstas toberas tienen dos o más orificios taladrados en el extremo. El número, tamaño y posición de los orificios depende de los requerimientos del motor.Toberas de vástago largoTienen un vástago largo que es una prolongación de la parte inferior. Los orificios normales y el asiento de la válvula están en el extremo del vástago largo.Toberas de agujaTienen un orificio mucho más grande y la punta de la aguja esta reducida para formar una especie de alfiler. Con esta modificación se pueden tener inyectores con diversos patrones de atomización. Se emplean en motores de inyección directa.Toberas de demoraSon toberas de aguja modificada en las que se ha cambiado la forma de la aguja para disminuir la cantidad de inyección al principio de la entrega.Tobera PintauxEs una modificación de la tobera de aguja. Tiene un agujero auxiliar para la atomización en la tobera, a fin de facilitar el arranque con el motor frío.El funcionamiento correcto de los inyectores influye en el buen funcionamiento del motor. Un inyector deficiente no podrá ejecutar su función y producirá fallos, golpeteos, sobrecalentamiento del motor, pérdida de potencia, humo negro en el escape o mayor consumo de combustible.

SE UTILIZA EL MICRÓMETRO 
¿QUE ES?
El micrómetro, que también es denominado tornillo de Palmer, calibre Palmer o simplemente palmer, es un instrumento de medicióncuyo nombre deriva etimológicamente de las palabras griegas μικρο (micros, pequeño) y μετρoν (metron, medición); su funcionamiento se basa en un tornillo micrométrico que sirve para valorar el tamaño de un objeto con gran precisión, en un rango del orden de centésimas o de milésimas de milímetro, 0,01 mm ó 0,001 mm (micra) respectivamente.
Para proceder con la medición posee dos extremos que son aproximados mutuamente merced a un tornillo de rosca fina que dispone en su contorno de una escala grabada, la cual puede incorporar un nonio. La longitud máxima mensurable con el micrómetro de exteriores es de 25 mm normalmente, si bien también los hay de 0 a 30, siendo por tanto preciso disponer de un aparato para cada rango de tamaños a medir: 0-25 mm, 25-50 mm, 50-75 mm...
Además, suele tener un sistema para limitar la torsión máxima del tornillo, necesario pues al ser muy fina la rosca no resulta fácil detectar un exceso de fuerza que pudiera ser causante de una disminución en la precisión.